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A linearized theory for rotational supercavitating flow 
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(Received 18 January 1963) 

In  this paper methods are given for establishing qualitative and quantitative 
measures of the effects of rotation in supercavitating flows past slender bodies. 
A linearized theory is developed for steady, two-dimensional flow under the 
assumption that the flow has a constant rotation throughout. The stream func- 
tion of the rotational flow satisfies Poisson’s equation. By using a particular 
solution of this equation, the rotational problem is reduced to a problem involving 
Laplace’s equation and harmonic perturbationvelocities. The resulting boundary- 
value problem is solved by use of conformal mapping and singularities from thin- 
airfoil theory. The theory is then applied to asymmetric shear flow past wedges 
and hydrofoils and to symmetric shear flow past wedges. The presence of rotation 
is shown to create significant changes in the forces acting on the slender bodies 
and in the shape and size of the trailing cavities. 

1. Introduction 
Cavitation occurs in a fluid flow as a consequence of local pressure reduction, 

usually brought about by high local velocities. The development of high-speed 
submarines, underwater missiles, and other vehicles, together with the surface- 
piercing hydrofoil ship, has renewed interest in the large-scale effects of cavita- 
tion. The hydrofoil and wedge (or strut) are practical parts of the total hydro- 
dynamic system of most of these vehicles. In  many cases these parts are long 
and slender and, at  sufficiently high speeds, produce long, trailing, steady-state 
cavities. The characteristics of these so-called supercavitating flows are of 
particular interest to the design engineer. When the cavity pressure does not 
differ greatly from the free-stream pressure, the velocities near the body and 
cavity are not greatly different from the free-stream speed. It is possible, then, 
to study the two-dimensional flows by means of a linearized theory based on the 
well-known theory of thin airfoils. 

In  linearized, two-dimensional theory the effects of viscosity are usually 
neglected. The flow is then assumed to be irrotational and the velocity to be 
uniform at points far from the slender body. However, since no fluid is com- 
pletely inviscid, all real flows are rotational. Even when viscosity is neglected, 
the flow picture may sometimes be best represented by a rotational flow. 

Many rotational flows have already been studied empirically and analytically. 
The rotational flows studied by Yih (1959) are of particular interest because his 
results show the importance of vorticity in reproducing physical effects. He 
considers the steady, rotational flow of an inviscid fluid in a two-dimensional 
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channel or in a circular tube toward a sink. His solutions show the unusual (for 
inviscid theory) features of separating streamlines and corner eddies similar to 
those found in the real viscous flows. Tsien (1943) recognized that in many 
applications of two-dimensional airfoil theory, irrotational flow conditions are 
not satisfied. He states in his paper on airfoils in shear flow that, for example, 
the large vertical velocity gradient near the ground can be approximated to the 
first order by a flow with a linear velocity distribution (a shear flow). 

Uniform flow + shear flow = perturbed flow 

c2q5&. B = v2qffl = 0 V q k P  -i = U*€ Wl) n = Urn€ 

(a) Flows 

(b) Wedge 

(c) Hydrofoil 

FIGURE 1.  Velocity distributions and fully cavitated flows. 

The present work may be regarded as an extension of both Tulin's linearized 
theory for supercavitating flow (1953) and Tsien's method for rotational, non- 
cavitating flow. The effects of gravity and surface tension are specifically 
neglected, while the effects of viscosity are modelled by the rotational flow. In 
the study a uniform, parallel, irrotational flow is perturbed by a uniform shear 
flow-a flow with constant vorticity. The vorticity is presumed to have come 
from some upstream disturbance, e.g. a boundary layer developing on the body 
of a vessel or on test-tunnel walls. Hydrofoils and struts that lie in the slip- 
stream or wake of other components would be in such a vortex field. 
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The perturbed flow and the physical problems to be studied are shown in 
figures 1 and 2. The perturbed flow is a uniform shear flow characterized by a 
linear velocity distribution. Both the rotational perturbed and the irrotational 
flows satisfy the equation of continuity; therefore, the stream function @ 
exists in both. However, the velocity potential 4 can, of course, exist only in 
the irrotational flow. Only steady, two-dimensional flows are studied; the fluid 
is of infinite extent and has a constant density p. The flow detaches at  the leading 
and trailing edges of the hydrofoil and a t  both edges of the blunt base of the 
symmetric wedge. Finally, the cavity length, when measured from the leading 
edge of the body, is greater than that of the solid body, i.e. full cavitation occurs. 

V21) = U,E,Y > 0 

A' c c '  
___c 

X 

FIGURE 2 .  Symmetric shear flow past a wedge. 

2. The linearized theory 
The linearized theory is developed under the assumption that the super- 

cavitating flows have a constant vorticity throughout. Because of its simplicity 
and convenience, Tulin's closed-cavity model is employed; however, other 
linearized models are available (see Geurst 1961 and Fabula 1962). Figure 1 
shows typical flows. The unit-length body is used without loss of generality, since 
it is equivalent to normalizing the problem on the actual body length. Although 
it is certainly disturbed in the neighbourhood of the slender body, the basic flow 
is assumed to be undisturbed at infinity and is characterized there by a constant 
vorticity. The wedge is aligned in the flow with its longitudinal centreline parallel 
to the x-axis, while the hydrofoil is placed at an angle of attack a with respect to 
the x-axis. 

The shear velocity profile a t  x = - 00 is Um[l - ey/chord], where U, represents 
the velocity at ( - 00, 0 )  and (U,e/chord) is the vorticity at  infinity. From these 
definitions it follows that the relative vorticity E is non-dimensional; it remains 
so even though the unit chord of the solid body is not shown specifically in the 
following development. The pressure a t  infinity is the undisturbed static pres- 
sure p,.  The flow velocities U and V are in the x- and y-directions, respectively, 
while the velocity a t  any point is q and the velocity on the cavity surfaces is q,. 
The closed, trailing cavity is characterized by a length Z greater than one, an 
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ordina,te y,(x), and a constant pressure pc.  It is presumed that the cavity is 
filled with air or water vapour. 

In a two-dimensional flow, the vorticity component is 5 = V/ax - aulay and 
the rotation is o = 45. Since the flow has a constant vorticity 5 = Urn€ at infinity, 
it  follows from the Helmholtz theorem on the permanence of rotation that the 
vorticity persists throughout the fluid; thus 

= Urn€. av au 
ax ay 
_-_ 

Furthermore, the continuity equation 

(2.1) 

( 2 . 2 )  

must be satisfied throughout the fluid. In  this rotational flow a stream function 
+(x, y), which satisfies equation ( 2 . 2 )  identically, exists and may be defined 
so that 

Poisson's equation 
V 2 $ ( X ,  y) = Urn€ 

(2.3) 

(2.4) 

is produced when $ is introduced into equation (2.1). Finally, the Bernoulli 
equation for steady two-dimensional flow with constant vorticity (or rotation) is 

p + &pq2 - ~ U , E $  = const. (2.5) 

By the use of superposition, the solution to equation (2.4) can be written as 
$J- = $J-fI + $J-p, with V27c., = 0 and V2$, = U, c. The stream function $' repre- 
sents a new harmonic flow; llcr is a particular solution of equation (2.4). From 

(2.6) 

It is evident that any problem that requires a solution for U and V can be 
reduced to an equivalent problem for the harmonic velocities L& and V'. 

The boundary conditions on the solid body and cavity walls and a com- 
patible boundary-value problem are established in terms of a linearized theory. 
The flow pattern is a combination of a parallel, uniform, shear flow and, super- 
posed on this, small velocity perturbations. The flow velocities are written in 
terms of the non-dimensional, harmonic perturbation velocities (u, v) in the 
x- and y-directions, respectively. Prom equation (2.6) 

U = Um(l+u-ey) and V = U,v (2.6a) 

in the linearized flow. In  a linearized theory it is assumed that the perturbation 
velocities (u, v), the attack (or wedge semi) angle a, the body shape (or camber) 
y,(x), and the cavity ordinate y,(x) are small. First-order terms in these quantities 



A linearized theory for rotational supercavitating flow 517 

are retained, but second- and higher-order terms are neglected. In  the present 
rotational development, terms of the form eyc arise in the boundary conditions 
for the perturbation velocities; in order to preserve the first-order smallness of 
these velocities, it  is necessary to restrict the relative vorticity B to a size of the 
order of one. In  this case, then, the flow reversal, which occurs in a uniform shear 
flow at y z 118, does not occur near the body-cavity combination, whose ordinates 
are usually very small compared to one. Finally, from the Cauchy-Riemann 
equations as applied to the harmonic perturbation velocities, it  is seen that these 
velocities change very slowly in space when the streamline slopes and curvatures 
&re small (Tulin 1953). For this reason the linearized boundary conditions are 
applied on the x-axis rather than on the surfaces of the slender body-cavity 
combination. 

Recalling that $ = $H+ (&eU,y2), one has, from equation (2 .5) ,  

The stream function gH represents the difference between the harmonic stream- 
function value on the x-axis and its value on the upstream extension of the 
cavity streamline. Thus, gH = - U, y,, where ym is the ordinate of the stagnation 
streamline at x = - co and its value is not known u priori. In these rotational 
flows the cavitation number CT, defined in the usual sense a,s 

(2.7) 
I. ~- 

cannot be used directly since 

where y ,  is unknown. Therefore, it  is convenient to define a rotational cavitation 
number z = q:/u$ - 1. (2 .7a)  

When either E + 0 or the flow is symmetric, then X = CT; otherwise, 

0- = s +q,(3 -€,gym). 

This relationship provides a means for relating the pressure differences and flow 
velocities in experimental programmes. 

On the cavity walls the velocity qc is constant for a given E .  Writing qc in terms 
of the perturbation velocities and introducing the result into equation ( 2 . 7 ~ 1 )  
yields, after linearization, the cavity boundary condition 

u(x,  0) = QC +€Y,(X) (a ,< x ,< Z). (2.8) 
When equation (2 .8)  is applied to the upper cavity surface in a flow past a hydro- 
foil, u = 0;  otherwise, a = 1 for flows past wedges and hydrofoils. Furthermore, 
if one lets U, = U,(l +u-ey,) on the cavity, then 4," = U,Z+ U$v2, and, from 
equation (2.7a), 

(2.9) 

Since the cavity is long and slender, the variations in the quantity eyC in equation 
(2.8) are certainly small over most of the cavity. It is reasonable, then, to replace 
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the first-order small term eyC with an average value k E on the upper and lower 
cavity surfaces, respectively. This averaging technique was introduced by 
Parkin (1957). The averaged quantity E is non-dimensional, and its value must be 
determined as part of the problem’s solution. Equation (2.8) now becomes 

(2.8a) 

on the upper and lower cavity surfaces, respectively. 

hence, in terms of the perturbation velocities, 
The total velocity on the solid body must be tangent to the surface of the body ; 

After linearization the body boundary condition is 

(2.10) 

This equation is also valid on the cavity surfaces and gives the surface slope at  
any point along the x-axis. In the cases for slender wedges and flat-plate hydro- 
foils, 

and equation (2.10) becomes 

21 = &a, / ( l+S)  (0 < x 6 l),  (2.lOa) 

on the upper and lower wedge surfaces respectively, and 

e, = -a&l+S)  (0 6 x 6 l), (2.10 6 )  
on the solid surface of the hydrofoil. The results acquired from equations (2.8a) 
and (2.10) provide for smooth separation. This condition, which must be satisfied, 
may be thought of as equivalent to the Kutta condition in airfoil theory in that 
both conditions serve to single out a particular solution to the flow-boundary- 
value problem. 

The cavity-closure condition is a characteristic of finite-cavity models. When 
the rotational and new irrotational flows are studied, it is seen that the sub- 
tracted portion $p of the rotational flow makes no net contribution to the flow 
within the body-cavity area; hence, the closure condition must hold in both 
flows, i.e. the net strength of sources within the body-cavity area must be zero. 
Finally, since the basic shear flow is undisturbed at  infinity, the perturbation 
velocities (u, v) approach zero at  great distances from the body-cavity system. 

The method of solution is based on the conformal mapping of the physical 
plane onto the exterior of the unit circle and makes use of the new harmonic flow. 
Following substitutions of (u ,v)  and $p into the equations (2.1) and (2.2), these 
equations reduce to 

(2.11) 
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respectively. In terms of the complex variable x = x+iy, the total complex 
velocity may be defined as 

with w ( z ) ,  the complex perturbation velocity, given by ~ ( z )  = u - iv. Equations 
(3.11) are the Cauchy-Riemann equations for ~ ( z ) ;  from these equations and 
the continuity of the flow, it follows that w(x) is analytic outside the body- 
cavity system, which is represented by a slit in the z-plane, where 0 6 z < 1 and 
z is real. Also, since (u, v) + 0 a t  infinity, u(z) must vanish a t  infinity. The z-plane 
and typical boundary conditions are shown in figure 3. Specific problems for 
uniform shear flow past wedges and hydrofoils, which are based on the conditions 
derived above, are summarized in table 1. Condition g ,  an additional condition, 
is imposed to restrict the magnitude of the singular behaviour so that the pressure 
distribution, which is proportional to Re (w), remains integrable. 

W ( z )  = U,[l + & ( z - Z ) + w ( z ) ]  

Wedge Hydrofoil 

Rew=+C+F,  l < x < Z ,  y + O +  
Rew=+C-Z, l < x < l ,  y + O -  
Imw = --a(I+C)), o < x < I, y 4 O+ 
Irnw=a(I+S)*, O < x < l ,  y + ~ -  
The cavity is closed, i.e. the net source strength on the slit i s  zero 

Rew=+C+S,  O < x < l ,  y+O+ 
Rew=&C-?,  I < X < ~ ,  y + O -  
None 
I m w = a ( l + C ) * ,  O < X < I ,  Y + O -  

(f) w(z) + 0 as z 4 co, i.e. (u, w) = 0 at infinity 
( 9 )  w(z) must not contain non-integrable singulasities on t8he slit or have multiple 

( h )  The flow is characterized by a smooth separation froin the rear of the body, 
values off the slit 

i.e. w < 00 a t  x = 1, y + 0 

TABLE 1. Boundary-value problems for complex perturbation velocity. 

In  accordance with Wu (1957) and Parkin (1957), the z-plane is now mapped 
conformally by a succession of transforms onto the [-plane (figure 3). The com- 
plex velocity ~ ( z )  is held invariant at corresponding points of the mappings. The 
transformations are listed in table 3. A complete solution w([) is formed from 
a series of singular complex functions. These functions (familiar in airfoil theory) 
and their properties are listed in table 3. From figure 3, it is clear that the real 
parts of the singular functions must satisfy particular conditions on the real 
axis while the imaginary parts must satisfy other conditions on the unit circle. 
In  addition, the limiting conditions on w as z + -cc must be met at  the corre- 
sponding points in the [- or &-planes. The strength of the singularities is limited 
by the pressure-integrability condition previously noted. These singular functions 
are discussed in detail by Parkin (1957, 1959) and Wu (1956, 1957). 

The solution is given in terms of the singular functions wi([) by 

i 

where the constants Ki, M ,  and N are real. The conditions given in table 1 serve 
to determine the constants and, in addition, to establish a relationship between 
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z-plane Solid 
body Cavity 'b!=x/2+TBB 

x = l  , 

- X  
ZI = a ( l  + z)+y&J. d, ,  /,,,--, ,,,,, , , 

' 't, = z / 2  2 
Slit x = l  

z-plane 
",. Solid 

body Cavity Y' 

'b!=x/2+TBB 
- X  

ZI = a ( l  + z)+y&J. d, ,  /,,,--, ,,,,, , , 
' 't, = z / 2  2 
Slit x = l  x = l  , 

1 v= - a( l  +Z) 

B ,  , , , , , , , 
, = x / 2  -7 - 1 0 + 1  u=x/2+7 

(a)  Wedge flow 
z-plane 

X 

B 

I -plane 

z, = --GI (1 +x)+ surface 

B z~=Z/~--E A 0 u=Z/2+-E B 
( b )  Hydrofoil flow 

-X 

5-plane 

( c )  Symmetric-wedge flow 
FIGURE 3. Mapping of z-plane onto unit circle. 



A linearized theory for rotational supercavitating froiu 521 

C and 1, with and a as parameters. Following the determination of w, the 
cavity shape and area and the pressure-force coefficients can be found by using 
equation (2.10) and the definitions given in the following paragraphs. 

From equation (2.10), the cavity shape is given by 

J a  
(2.72) 

IVcdge Hydrofoil 

(Mobius) t = k 2 L  
I - Z  

(Square root) Q = t* = X: ~ 

1 
2 Q = { + -  < 
k = ( I -  I)& 

(Joukowsky) 2Q + 1 = 

L = ( 1  - 1 ) h  

TABLE 2. Transformations. 

Value of Value of 
Rew on Imw on 

WAC) Purpose I m c = O  unit circle Remarks 

f + +T, Re 5 > 0 
1 - &r, Re 5 < 0 i Regular at trailing edges 

of wedge 
<+i To satisfy jump in Im(w) 0 
<- i at nose of wedge 1. In- 

Vortex pair to provide 0 
3. ( 5 - ; )  closure singularity- 

branching of stream- 
lines at end of cavity 

0 Simple poles; regular at 
trailing edges of wedge 
and hydrofoil 

0 Regular a t  trailing edges 
of wedge and hydrofoil 

3. i In g To satisfy jump in Re (w) 
from upper to lower 
cavity surfaces 

C2 - 1 A function symmetric 0 4. i- <’+ 1 about the Im (5)  axis. 
To satisfy conditjion 
that w(5) --f 0 at 
C1(z = -a) in wedge 
flow 

i(p- 1)  

( 5 + i )  ( 5 -  9’ 
Equivalentto __- -. 0 

a simple pole a t  wedge 
nose and regular a t  
trailing edge 

1 Vortex a t  nose of 0 -+  Regular a t  trailing edge 
of hydrofoil 

5. i- 5 -  1 hydrofoil to satisfy 
Im (w) = constant 
on foil in <-plane 

TABLE 3. Singularities. 

For wedges, a = 1 on both surfaces, while yo( 1) = 5 cz on the upper and lower 
surfaces, respectively. For hydrofoils, a = 0 and yo(0) = 0 on the upper cavity 
surface; a = 1 with yo(l)  = -a  on the lower surface. Also, using (2.10), Geurst 
& Timman (1956) have shown that the body-cavity area S may be given by 

(2.13) 
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The contour integral B+C follows a closed, counterclockwise path over the 
body-cavity surfaces. Recalling that v = -Imw, one may write equation (2.12) 
so that 

(3.13 a )  y,(x) = - (1 + Z)-A Im wdz + yofa), 1: 
where x = z on the slit. 

Cp, which is given by 

From equation (3.5) 

Calculation of the pressure-force coefficients is based on the pressure coefficient 

Cl, = (P-Pc) l tPU2 .  (2.14) 

P-P, = MCl -&m. 
After this relation is linearized, equation (2.14) becomes 

cp = - 3u,(U0- u,)lu:, 

Coefficient Wedge Hydrofoil 

P-Pc 1. cp=--- 
WJk 2( 1 + S)* [ * zx+ frr- - u] - 2( 1 + c)* [Ex+ u- p] 

L 
$p U L  (chord) 

4. cL= 

t C p  x: dx L ( Z )  
5. C&fO = 

+pU2,(chord)2 

* Based on first-order smallness of angle of attack a. 
t Taken at leading edge of body; positive in the counter-clockwise direction. 

TABLE 4. Pressure-force coefficients. 

where ri, and r{ are the x-components of velocity on the solid-body and cavity 
surfaces, respectively. From equation (2.6a), U, = U,(l +u-eyo)  and from 
(2.9), V,  = U,(l+C)*; hence 

c, = -2(l+Z)9(-gx+u-€yy,),  (2.14 a) 

since 1 - (1 + Z)& M - +C. In  order to be consistent with the averaging approxi- 
mation and to have a continuous velocity at the trailing edge, one must take 
ley( = 1E1 on the solid body at  x = 1. On the wedge, y = 5 ax; hence, to the order 
of the approximation ey = t. Ex. On the hydrofoil, y = -ax and ey = -Ex. 
Table 4 gives the final result for Cp and for the remaining coefficients in terms of 
C,. The drag coefficient CD is based on the base area of the wedge, i.e. 2a; the 
remaining coefficients use the chord of the body as a characteristic length. 

From the manner in which E arises, it  is reasonable t o  let 

- €(cavity area) 
& =  ______ 

2(Z-l)(chord)’ 
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i.e. i3 equals the average value of e lyl/chord over the cavity. On the other hand, 
since the vorticity creates an additional circulation, this property may be used 
to characterize the influence of the vorticity. (This concept was used by Parkin 
1957 in his study of supercavitating flow past hydrofoils in a transverse-gravity 
field.) Thus, i3 is chosen so that the actual circulation I? is equal to the circulation 
I? based on the constant perturbation velocities associated with E. It is con- 
venient to balance I? and r in terms of the harmonic velocities U, and V'. The 
resulting circulations, which are defined in the usual manner, are given to the 
first order in table 5. Observe that in the expression for E in table 5, the terms in 
the large parentheses are precisely equal to the cavity area for the wedge flow 
and equal to the cavity area less the triangular area between the hydrofoil and 
the x-axis for the hydrofoil flow. Thus, the matching of circulations at once 
provides a reasonably rigorous and intuitively satisfying result. 

- 

Note: The subscripts U and L refer rcspectively to the upper and lower surfaces of the 
body or cavity. 

TABLE 5. Flow circulations. 

3. Applications of the linearized theory 
3.1. Asymmetric $ow past a wedge 

The first flow studied is a supercavitating, uniform, shear flow past a wedge. 
The asymmetric, undisturbed velocity profile of the flow is shown in figure 1 
(solid-line profile). 

The mapping of the z-plane and the appropriate boundary conditions are 
indicated in figure 3 (a) .  By using the transformations in table 2, one can show 
(Acosta 1961) that 

where 1 c1 = i[Z& + (I - 1)+], 

c2 = i[Zt - (I - 1 ) q .  
( 3 2 )  

The root cl is outside the unit circle and represents the point z = co. 
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The complex boundary-value problem for this wedge flow is given in table 1. 
A comparison of the boundary conditions and available singularities (table 3) 
shows that the solution must have the form 

In this form w satisfies the differential equation and conditions a, b, c, cl, g 
and h of the boundary-value problem. The remaining conditions serve to establish 
A and D and to determine a unique relation between 1 and Z for given E and a. 

As Wu (1957) has pointed out, much is learned by expanding w(z) in a series 
of the form 

c 
(3.4) 

as z -+ co. As x + co, < -+ 
in descending powers of z. Acosta (1961) has shown that 

hence, by using (3.1) and (3.2), [ can be expanded 

z q z -  1)& z q z -  1)$ {2Z+ 1 + & Z -  l)*} 
+ (zt.)l. - 

(3.5) + -  8z2 

This result is now introduced into (3.3) and the combination is simplified. The 
series expansion of w(x) in descending powers of x is then 

(1-T)' 

._ 
2E 

7l 
( l+X)~-Z~(Z- l )A+- I~ (Z- l )* - iD  

._ 
(1 +cpzqz- 1) --(I- A 1) (32+ 1) z4+-2qz- ZE 1)& (2Z+ 1) 

4 47r 
. DT 

- z [Z*(l- 1)* (1 - T )  {2Z+ 1 + ZJ(1- 1)&} + Z(Z- 1) (3T + l)] 
2( 1 - T)3 

where [: = - T = - [2Z- 1 + 2Z*(E - I)&]. From boundary conditions e and f one 
has a, = a, = b, = 0. It follows from (3.6) that, first 

A = a( 1 + Z)t/77(2 - 1) (3.7a) 

and 

and second, by using these results, 

(3.7b) 

(3.8) 

This equation is the same as that obtained by Tulin (1963) and Wu (1957) for 
irrotational flow past a wedge; the vorticity in the flow has no first-order effect 
on the cavity length. 
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This same conclusion can be reached by physical reasoning as follows: If a 
first-order length effect enters as E, then changing the sign of E reverses the first- 
order effect but simply inverts the flow field. Hence, a contradiction would 
result from the presence of a first-order length effect. This same reasoning applies 
to first-order changes in the drag and the cavity area, but not to changes in the 
other pressure-force coefficients or in the cavity shape. 

r - 0  

* 

I Gr-0 

FIGURE 4. Contour paths for complex integration. 

The complex perturbation velocity w(z)  may now be written as 

iE 4T 
277 ' [  T 2 - 1  

w+!) = --l+ 1)x 1 +- 

+- l * ( L  1)+ (31 + 1) 
219(1- l)* (1  + T )  

21+1 

._ 4Tln (l* + (1 - 1)h) - + 

a€ 
1 - 

477 [ (T2-  1 ) ( 1 T  ( 
+ o($. (3.9) 

The remaining calculations are ba,sed on equations (3.3) and (3.9). 
First, the cavity area and shape are calculated. By making use of the fact that 

w(z)  is analytic off the slit, of the theory of residues, and of equation (3.4), one 
may write equation (2.13) as 

where T is a circle of large radius surrounding the slit as shown in figure 4. 
From (3.9),  

Thus s = a@, (3.10) 

and, since the cavity area A,  = S -a, 

a2 = -a( 1 + X)+ 1+/37r. 

A, = a(& 1). (3.11) 
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To find the cavity shape, (2.12a) is rewritten in the form 

on the upper cavity surface, and 
--t u(6) az 

- ac y,=-a- Im --___ s -1 (1 +sp d c  
on the lower surface. For It1 b 1,  one obtains from (3.1) 

(3.12) 

where T = - c: and R = - ci. The derivative dx/dc is found by differentiating 
equation (3.1). Combining the above with (3.7) and using the relation c:ci = 1, 
one obtains the following. 

On the upper cavity surface, where t >, 1, 

and on the lower cavity surface, where t Q 1,  

Next, the pressure-force coefficients are determined. From table 4 

c;l, = 2 ( 1 + c ) : ( p - u ~ Z x )  (3.14) 

on the wedge where 0 < x 6 1. Since 5 = eis on the wedge surfaces, the plus sign 
and 0 6 8 < i.;. apply when y > 0 and the minus sign and &r Q 8 6 7r apply 
when y < 0. The combination of (3.3) and (3.7) and the introduction of c = eie 
give, for the real part of w on the wedge, 

+ E  I - -  2(1+C)4aln ( y )  71 

From the transformations listed in table 2,  one obtains, on the wedge, 

x = Z~os~O/(Z--sin~8). (3.15) 

The above results are now introduced into (3.14) and yield 
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Equations (3.15) and (3.16) give the pressure coefficient C, as a function of x 
on the wedge surfaces. 

The drag coefficient is, from table 4, 

(3.17) 

The contour integral B follows a closed, counterclockwise path on the wedge 
surfaces. When equation (3.14) is introduced into (3.17) and the relationships 
dy = v( 1 + X)* dx  and 2uv = - Im w2 are used, then 

Since w is analytic off the slit, one can write 

f B  w2dz = $T w2dz - w2dz, 
c 

in terms of the contour paths in figure 4. The path C around the cavity on the 
slit consists of all the slit S (for 1 Q x Q I) plus a small circle e (radius r -+ 0) 
that surrounds the point z = 1. On T, w has the form 

so that, by the theory of residues, w2dz = 0. The integral over the cavity is 
given by 

Im f C  W2dZ = Im 

where J T  is the integral over e. It is easily shown that Im 

f B  ( T Cx + 42) dy = 0. Thus, equation ( 3 . 1 7 ~ ~ )  may be simplified to 

cD = ImJT/%X. (3.17b) 

In  order to evalua,te this result, w must be expanded as z -f 1. From equation 
(3.1), <+ ZiZ&(Z-l)*(z--Z)J as x + Z .  Using this result, Street (1962) has shown 
that w has the form 

w2dz = 0 and that 
$s 

3AZ+(Z - l)t 
(2  - Z)+ 

w(z)  +- - + O[ln ( x  - Z)+] as z + 1. 

Evaluation of the resulting integrals over the path e shows that 

JT = $ w2dz = iSnZ(Z- 1) A2. 

Introducing this result and the value of A given in ( 3 . 7 ~ ~ )  into equation (3.17b) 

(3.18) 
gives the drag coefficient 

As expected, this result is precisely that given by Tulin (1953) and Wu (1957) 
for irrotational, supercavitating flow about a slender wedge; vorticity has no 
firsborder (order of Z) effect on the drag. 

e 

4 4  1 + S )  Z c, = 
7r(Z- 1) - 
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From table 4, the lift coefficient C, is 

c, = - -2 ( l+X)+  

The real part of wdz is equal to udx on the wedge and 

n 

so that C, = -2(1+X)gRe wdx-S(l+X):E. (3.19) 

Following the same steps as in finding C,, one obtains 

Re f e  wdz = 0. 

Using these results, (3.19) can be put into the form 

4T C, = 4 ( 1 + X ) t  Z&(Z-l)+ l+-ln(Z&+(Z-l)&) 1 [ TZ-1 

The moment coefficient about the nose of the wedge is defined as 

LX 
% p  U$ ( chord)2 ’ 

CM0 = l^-~ 

positive in the counterclockwise direction where Z is the distance to the centre 
of lift. Again using the results in table 4, one has 

C,,,, = - 2 ( l + S ) +  uxdx+2(l+X)t  ( T E x + $ X ) x d x .  (3.21) 
$?3 S6B 

The steps that led to the determination of C, and C, are now repeated. One finds 

Re $T wzdz = - Bnb, 

f e w z d z  = 0 and Re zixdx = - E ( E 2 -  I). 

By the introduction of these formulae, equation (3.21) can be reduced to the form 
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Now, from table 5 ,  

In  5 2.3, it  was noted that the quantity in the large parenthesis is the cavity area 
A,. Thus 

- sC((1~- 1) 
2(1-1) . 

6 = 

0 

Cavitation number, C 

FIGURE 5.  Vorticity parameter zw cavitation number for flow past a unit wedge. 

Equation (3.23) is introduced into the previously obtained results to complete 
the solution to the problem. 

As predicted earlier, the (1 ,  X)-relation, A,, and C, are independent of the 
vorticity. On the other hand, C, and C,,, depend linearly on s; both coefficients 
are, of course, zero in the irrotational, uniform, supercavitating flow past a 
wedge. 

Those results that are directly affected by vorticity are plotted in figures 5 
to 9. The first figure shows cis as a function of 2. The next is a plot of typical 
cavity shapes; the two vorticity terms in (3.13) account for the airfoil shape of 
the cavity. The second, or logarithmic, term becomes large only near the end of 

34 Fluid Mech. 17 
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the cavity and tends to  pull the cavity end downward. The key results of the 
theory are Cp, CL and Cafe. Since the latter two are linear functions of e)  figures 
7 and 8 are plotted with CJs and Cinlo/e as functions of X for several values of a. 
The increase of both coe%cients with decreasing .C, increasing a, and increasing 
vorticity (or e) is clearly seen. As I; approaches zero, 1, C, and CMo approach 
infinity. Tsien (1943) found that this behaviour also occurs in shear flow about 

Undistorted shape (irrotatio~l flow) 
1=30 

a = 10" 

FIGURE 6. Cavity shapes at  constant cavitation number in 

- Irrotational flow = 0.0865 + ~=0.04 
--- 6 = 0.08 

uniform shear flow past a unit wedge. 

Cavitation number, C 

FIGURE 7. Lift, coefficient for shear flow past a wedge. 
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an infinitely long, solid body. The pressure coefficient Cp is presented in figure 9. 
On the upper wedge surface near the nose, C, exhibits a large negative value; 
this phenomenon is associated with the high velocities required for the fluid to 
turn about the sharp nose point in the equivalent non-linearized flow where the 
stagnation point on the wedge is below the x-axis and behind the nose. There is 
some experimental evidence that indicates that a small cavity actually forms 
in this region of low pressure. 

Cavitation number, S 
FIGURE 8. Moment coefficient for shear flow past a wedge. 

" 0  0.2 0.4 0.6 0.8 
Distance from nose, x 

FIGURE 9. S = 0.0865, I = 30, a = 10" pressure coefficient for shear flow past a wedge. 
34-2 
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3.2. Symmetric flow past a wedge 
In  symmetric flow (figure 2) Poisson's equation V2@ = Urn& holds for y > 0, 
but V 2 ~  = - U,e holds for y < 0, contrary to the asymmetric case. It becomes 
necessary then, to reformulate the wedge boundary-value problem outlined in 
table 1. However, the conformal mappings used in $3.1 may also be used here. 
Furthermore, in 3 2, the rotational flow was reduced to a harmonic or irrotational 
flow by introducing the stream function @ p  = U,&y2/2. In  symmetric flow, it is 
necessary to use y9pu = Urn ey2/2 when y > 0 and @pL = - U, ey2/2 when y < 0. 
The remainder of the development in S 2 is unchanged. 

The boundary conditions in symmetric flow are: (a)  the same on the upper 
and lower surfaces of the body-cavity combination, and ( b )  the same as those for 
the upper surfaces of the wedge-cavity combination in asymmetric shear flow. 
The new boundary conditions on the slit and the mapped planes are shown in 
figure 3(c). The mapping equation (3.1) gives z as a function of 5 as before. The 
boundary-value problem for symmetric flow in terms of 10 = u - i v  is  the same 
as that given for wedge flow in table 1, except that condition ( b )  becomes 

Rew = @+8 

It is seen from equation (3.3) that 

(1  < a: < I, y < 0 ) ,  

and in symmetric flow S = g = ( p a  -p,)/&pU2,. 

(3 .25)  

satisfies the differential equation and conditions a, b,  c ,  d ,  g and h of the revised 
boundary-value problem. As before, the remaining conditions serve to determine 
A and a relation between I and g for fixed 8 and a. 

By using (3.5) and (3.6) w can be expanded in the form shown in equation (3.4). 
The result is 

a(1 +a)B ( I +  1)  I:-$A ( I -  1)  (31+ 
+2[ 4n 

as z+m, and since boundary conditions e and f require that a, = b, = a1 = 0 ,  
it  follows that A = a( 1 + a)+f(Z - l ) ,  

and 

The complex velocity w(z)  can now be written as 

(3.26) 

(3.27) 

The remaining calculations are based on equations (3.24) and (3.27). Since the 
cavity remains symmetric in shape, no lift or moments can be expected. The 
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quantities of interest, then, are the cavity shape, cavity area, and the pressure 
and drag coefficients. Only the upper wedge surface C, and the upper cavity 
y,(x) need be calculated because of the flow symmetry. 

The cavity area and shape are found first. From 5 3.1, one has 

s = A,+a = -2na,(l+a)-k 
s = 0118 

A, = a(1Q - 1). 

Thus, as before 

and 

(3.28~~) 

(3.28b) 

Since, as is seen in (3.26), a positive vorticity shortens the cavity length 1 for 
a fixed a, the areas A, and S are reduced also. The cavity shape is easily found 
by use of (3.13a) and several results from $3.1. The result is 

(3.13~) 

Next, the pressure and drag coefficients are determined. Following the same 

c, = 2(1+a)qzx++r-u)  (0 ,< x ,< 1). (3.30) 

From the similar calculations in § 3.1, it  fbllows immediately that, on the upper 
wedge surface, 

procedure as in $ 2  yields 

The drag coefficient C, is found by utilizing the relationships developed in $ 3.1 
and allowing for the present symmetry of the boundary conditions; the result is 

C, = -L [Imp w2dx+2(1+a)~ 
2a W $w 1 (Ex+Ba)dy 

By using the same contour integrals as before (see figure a), one finds that 

C, = l I m $  2a w2dz-(1+a)iE. 
e 

Comparing equations (3.3) and (3.24), one sees that 

2A{Z(l- 1))f 
(2 - 1))  

w(2) --f &T+E- 

as x + 1. From this result, it follows that 

and 4 4  1 + a) 1 C - ( 1 + r)& e . = - n(Z-1) 
(3.32) 
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Since the circulation I? is zero about the cavity in symmetric flow, the method 
of matching circulations cannot be used to determine B (a process that was 
successful in 5 3.1). However, since i? is to be a representative value of e (yc[ over 
the whole cavity, it  is reasonable to choose 

(3.33) 

i.e. the mathematical average value. Again, the value of B given by (3.33) is 
introduced into the previously obtained results. 

FIGURE 10. Cavitation number vs cavity length for symmetric 
shear flow past a wedge: a = 10". 

Three important results are presented in graphical form in figures 10 to 13. 
First, cr is plotted as a function of 1 in figure 10. It is evident that positive vor- 
ticity ( E  > 0 )  causes a reduction in 1 for fixed values of cr. Although 1 + co when 
(T + 0 in an irrotational flow ( e  = 0), there is a maximum I corresponding to 
each value of e > 0 in the rotational flow. When e < 0,  the solution is no longer 
unique and there exists a crmin for each e. If cr > vmin, there are two possible 
cavity lengths-the conjugate lengths. Both solutions satisfy all imposed 
boundary conditions and produce physically reasonable C, and cavity shapes 
(figures 11 and la).  Secondly, C, is given as a function of (T for three values 
of e when a = 10" in figure 11. When e > 0, the values of C, for given cr and a 
are equal to or less than the corresponding irrotational values, and when e < 0, 
the C, values lie on or above the comparable irrotational values. Note the 
reappearance of rmin for e < 0 and the two possible values of CD for each 
cr > gmin. Finally, figure 13 shows the shapes of the cavities when (T is fixed 
and e is varied. The two longest cavities shown are the conjugate-length 
cavities for e = - 0.08. 
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3.3. Asymmetric $ow past a hydrofoil 
The final problem considered is a parallel, uniform, shear flow past a super- 
cavitating, flat-plate hydrofoil as shown in figure 1. This development, which is 
based onthe m&hods-outlined in 3 2, closely follows the development used 

Cavitation number, u 

FIGURE 11. Drag coefficient 2)s cavitation number for symmetric 
shear flow past a wedge: a = 10". 

+ 0.2 

+ 0.1 

0 
h 

&? -0.1 
2 .. -0.2 
v 

2 -0.5 +t5: 
0 Undistorted shapes 
.3 B + 0.5 

* -0.5 
X 

+ 0.1 8* 

0 

- 0.1 Cavity abscissa, x 

FIGURE 12. Cavity shapes for wedge in symmetric shear flow 
at constant cavitation number. 

Parkin (1957). The basis boundary-value problems for the two flows differ only 
by a change in sign of the perturbation parameter. The boundary-value probIem 
is given in table 1; the mapping transformations are listed in table 2 ;  and the 
slit z-plane and transformed planes, together with corresponding boundary 
conditions, are shown in figure 3 (6) .  
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By comparing the boundary conditions and the available singularities, one 
can see that w should have the form 

iD w(6) = iA 5-- +iB+iCIn<+-+E. (3.34) ( 3 6 - 1  
The boundary conditions are now applied to this equation to determine the 
constants A ,  B, C, D and E. This application leads to the following: 

E = +S+E, C = 22/77, B = a ( l + C ) & + + - D .  

Equation (3.34) then becomes 

i28 1 
m ( 6 )  = iA 5-- +ia(l+S)&+-lIn<+iD a- (: -+- <-1) +gs+z. (3.34a) ( 3 

I n  this form, w satisfies the differential equation and all boundary conditions 
except e and f in table 1. These remaining conditions allow determination of 
A ,  D, and an Z - X relationship. 

Following Parkin (1957), one completes the solution in the Q-plane (see 
figure 3(b)). From condition f ,  w(z )  .+ 0 and Q + ik as z + -m. When Q = ik, 

6 = 2ik+ 1 + 2 ( i k - k ) $ .  
Letting r = (16 + I )&+ (Z+ - I)&, s = (Z* + I)& - ( Z f r  - 114, 

A, = In [( 1 + l c g ~ ) ~  + (2k + k&r)2] and A, = t a r 1  ___, 2k + k b  
1 + k4.S 

one obtains from ( 3 . 3 4 ~ ~ )  

+ i (2k  + k b )  - + ia( 1 + s): 
1 + kks + L( 2k + k b )  

i28 28 + iD[+ + (k4.s + ik*r)-,]+ - A, - - A, + *C + E = 0. (3.35) 

Equation (3.35) provides two equations for A and D.  When solved simultan- 
eously, these two equations lead to 

7T 7r 

and 

(3.36~1) 
1 

a- 

D = - (4" [s (8--+$c) 28A, + r  rL+a(l +x)*)]. (3.363) a- 7r 

I n  the Q-plane the complex perturbation velocity is 

w(&) = i4AQ&(Q+ l)$++iB&-&(Q+ l ) & + i a ( I + Z ) h + & Z  

The remaining condition e is the closure condition, which requires that the - 

net strength of sources within the cavity must be equal to zero or, equivalently, 
that w(z) have no real residue within an infinitely large circle T surrounding the 
cavity (see figure 4), i.e. 

ImfTwdz = 0. 
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Because w is harmonic outside of the slit in the z-plane, it  follows that 

wax = 0, 
Im $B+C 

(3.38) 

where B + C is the boundary of the foil-cavity system. Thus, in the &-plane, the 
closure integral I, is 

a2 
1, = $ w(Q)- dQ. 

B+C dQ 
(3 .39)  

The foil-cavity system extends from - 00 to + 00 in the &-plane. This integral 
is evaluated over a closed contour C, formed by the real axis and a semicircle 
of radius R in the upper half plane. When R + a, it follows immediately that 

21k2 = - 27ri (residues within C,). (3.40) 
( k2 + &2)2  

rc = - 

The minus signs account for the reversal of the line integral orientation in the 
&-plane. The only residue within C, occurs at  the second-order pole Q = i k  
and is given by 5 

3 
(3.41) 

since w(ik)  = 0. The introduction of (3 .37)  into (3.41) and the use of the sub- 
sequent result give 

(3 .42 )  
From (3 .38)  and (3 .39 ) )  it  follows that 

8Es A + -  + r ( 1 6 k 2 A + D )  = 0. ( 9 
By introducing the values of the constants A and D, one derives, upon sim- 
plification, the closure condition 

(3 .43)  
2 4  kz): h - k n  I - -  a =  Ice -?-[ 1 ( 2;2) k + l t ] .  2( 1 + ep n( 1 + ep 

As E + 0 ,  this equation reduces to Tulin’s condition for closure in the irrotational 
case, i.e. 

with E = CT when E = 0. When E is not zero, positive vorticity ( B  > 0 )  produces 
a lengthening of the cavity over the irrotational case for fixed a and 2. 

The cavity shape is found by integrating (2 .12)  directly in the &-plane from 
the leading or trailing edge of the hydrofoil. The result is that 

(a)  on the upper cavity surface, for q 

a = +kS( 1 + C)-.P, 

0, 
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( b )  on the lower cavity surface, for IqI 2 1, 

These integrals, which were evaluated by Parkin (1957), are summarized in 
Appendix C of Street (1962). The value of x for a corresponding q is found by 
integrating dzldQ and is given by 

x q2 
1 k2 + q 2 '  
- (3.45) 

Since the cavity and body-cavity areas are equal in this case, the cavity area 
A, is, from (2.13), 1 A, = -~ wzdz. 

( l + X ) 4 1 r n f  B+C 

The contour integral is evaluated in the Q-plane, where 

Q3dQ wzdz = - 2k2Z2 4 w(Q) ____ 
B+C C R  (k2  + Q2)3'  

The only pole in the region is at  Q = ik; the residue of the third-order pole there is 

It is easily shown that Cc = - 27rib, and therefore that 

(3.46) 
Thus, 

A, = 4A[k(4k2+5)r+(2k2+ 1 )~ ] -4D 

(3.47) 
with A and D given by equations (3.36). 

The pressure coefficient C,, which represents the difference between the 
pressure p on the lower surface of the hydrofoil and the cavity pressure p ,  on 
the upper surface, is given, from table 4, by 

(3.48) 

Since the lower side of the foil corresponds to Q = < ein (0 < < < 1 ), in the &-plane, 
one can write 

c, = -2( l+Z)&(-  GX - +x + u). 

C, = - 2( 1 + X)+ - 4A@( 1 - [)* + $D[-*( 1 - <)* 

0 < [ < 1 and tan-l[ ...I < 7~ (3.49) 

by using the given transformations and equation (3.37). 
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The normal force coefficient CN is given by C, = C,dx and, from (3.48), 

(3.50) 

Writing the integral in terms of the contour integral around the cavity gives 

Io1udz = Re$ wda- udx- udx. 
B+C 

The integral of w around the end of the cavity makes no contribution to the 
normal force; it may be shown also that the integral of wx around the end of the 
cavity will make no contribution to the moment. Thus, from the above and 
the given boundary conditions, 

ax 
$B+C a& w(Q) -dQ + $C + Z(2l - I). Joludz = Re 

The introduction of this result and (3.39) into equation (3.50) produces 

C, = - (1 + X)& [:(4l- 1) + ZRe(I,)] 

The final form of C, is obtained upon substitution of the known value of I, into 
this result; then, 

(3.51) 

The moment coefficient CAI, about the leading edge of the hydrofoil is, from 
Recall that C, = C,, C, = aCN, and a = D/L. 

table 4, 
CAI0 = ~ o l c p r d x .  

When equation (3.48) is introduced into this result, one derives 

c,,, = - 2( 1 + C)& # - gc + uxdx . [ /ol I (3.52) 

As before, the integral on the foil is transformed into a contour integral with 
the result that 

E ( P -  8) +Re $ w(&) $a&]. 
B+C 

Ciwo = 

The integral in this equation was evaluated in connexion with the determination 
of A,  and its value is given by the real part of equation (3.46). Hence, after minor 
rearrangement, 

c,,, = 2 ( 1 + ~ ) ~  ( Z [ + ( Z ~ ) + { ( ~ Z +  l ) r + k s } - ~ + ~ ]  

+- "(zk)'[4A{(61- 33 l)r-(lZZ+ l ) k s } + ~ D { r - ( 2 k + 3 / k ) s ) ] ) .  (3.53) 
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Finally, one determines the vorticity parameter 8. From table 5 

This result may be written as 
€ = €(A,  - *a)/2(1- 1). (3.54) 

Recalling that (3.47) gives A, as a function of 8, one can see that 1 may now be 
found directly. This calculation involves solving a quadratic relation obtained 
by combining (3.47) and (3.54) and using (3.44) to eliminate X. The result 
obtained is 

where 

X, = g [2(2k  + 1)  (I$ - 1) - krs(41c2 + 6)] - 1, 

7T 

2rh 8(Zk)* 
- p - r - -4 [(4k2 + 5) Icr + (2k2 + 1)  s] - ~ (Icr - s )  

7r 7T 

and X, = 2 ( 2 l -  l) /e.  

When e > 0 (X, > 0) ,  the positive square root must be chosen, otherwise, 
8 tends to a finite limit as e + Of;  this is, of course, impossible. Fore < 0 (X, < 0) ,  
the negative square root is chosen. With B known explicitly as a function of e, 
I (or X), and a, the solution is complete. The results are presented graphically 
in figures 13 t o  21. 

The cavity length I is plotted as a function of X for two values of a in figure 13. 
For a given X the cavity is lengthened by positive vorticity. In  figure 14, the 
vorticity parameter is plotted versus S for various a's. A typical cavity shape is 
shown in figure 15. The effect of positive vorticity is seen to be an increase in 
cavity width and X for fixed 1. 

The force coefficients c;l, and C,, are pictured in figures 16 to 19. They are 
plotted versus X in figures 16 and 18, while they are plotted versus c in figures 17 
and 19. The rapid increase in both coefficients as Z becomes small and I grows 
large is consistent with the results obtained by Tsien (1943) and those of 8 3.1. 
The effect of the relative vorticity e on C, and C,, is less pronounced except 
when S is small. 
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Two sets of typical pressure coefficient data are presented in figures 20 and 21. 
The first shows the effect of B on C, with 1 held constant. The second shows the 
effect of C on C,, when a and B are held constant. 

Finally, from figure 13 it is seen that when e > 0 ,  the solution of the problem 
is not unique. There is a Smin for each value of 6 > 0 and a. When C > Cmin, 

8 0.1 0.2 0.3 
Cavitation number, C 

FIGURE 13. Cavity length us cavitation number for shear flow past a hydrofoil: u = 4 O .  

0.035 t I _. 

0.030 

8 0.025 
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0.015 
.f: 
.s 0.010 

0.005 
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iu 

i;l a 

$ 

ia 

Cavitation number, S 

vorticity para.meter for shear flow past a hydrofoil. 
FIGURE 14. Effect of vorticity and cavitation number on 
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X 

0.2 
0 

- 0.2 
Undistorted shape for e = 0 

FIGURE 15. Cavity shapes a t  constant length in uniform shear flow. 

Cavitation number, Z 

FIGURE 16. Normal force coefficient vs cavitation number for 
shear flow past a hydrofoil. 
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3 0.3 
4s" 

.* G 
$ 0.2 

5 0.1 

g o  

E: 
a, 

6 

i! 

0.02 0.04' 0.06 008 0.1 - 0.02 0 
Relative vorticity, B 

FIGURE 17. Effect of vorticity on C N :  a = 3" flow past a hydrofoil. 

0 
2 0.2 
t, 

0 

Cavitation number, S 

FIGURE 18. Moment coefficient vs cavitation number for 
flow past a hydrofoil a t  e = 0.04. 

543 

Relative vorticity, e 

FIGURE 19. Effect of vorticity on CMO a t  a = 3" for flow past a, hydrofoil. 
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there are two possible cavity lengths-the conjugate lengths; when X < Slnin, 
no solution exists to the linearized problem, As in the case of symmetric flow 
past a wedge ($3.2),  when two solutions do exist, they both satisfy all conditions 
of the problem and produce reasonable pressure force coefficients. 

0.2 

s € I C  
+" 0 4.0 0.0215 
.3 8 0.1 4.0 0.0222 

4 0.1 

2 
00 

rn 
8 
P I 0  

0 0.2 0.4 0.6 0.8 1 
Distance from nose, z 

FIGURE 20. Effect of vorticity on pressure coefficient for shear flow past a hydrofoil: CY = I -. 

c? 1.0 

0 

3.0 0.106 
5.0 0.075 

10.0 0.051 
100.0 0.024 C = 0.326 

0 0.2 0.4 0.6 0.8 1.0 
Distance from nose, x 

FIGURE 21. Effect of cavitation number on C p  for shear flow 
past a hydrofoil: CL = 4 O ,  E = 0.06. 

4. Concluding remarks 
From the applications of the theory in 5 3, it may be concluded that the effects 

of rotation (or vorticity) can be significant. In  the cases of symmetric shear flow 
with negative vorticity and uniform shear flow past hydrofoils with positive 
vorticity, further analysis and experimentation will be required to determine if 
the non-unique solutions found in $5 3.2 and 3.3 do occur. 

In  the uniform-shear flows about wedges and flat-plate hydrofoils, positive 
vorticity causes an increase in lift and moment forces; in hydrofoil flows the drag 
is increased also. It is important to recall the large increase in the size of vorticity 
effects that occur as the cavity lengthens. The work of Parkin (1957) suggests 
that the present linearized theory may over-estimate the vorticity effects when 
the cavity is extremely long. The present theory gives no indication of failure 
in these regions; however, as the cavity length approaches infinity, the lift and 
moment coefficients do become infinite. 
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The present application is limited in several ways. The wedge half-angles 
and the hydrofoil attack angles are bounded by the upper limits associated with 
the basic linearized theory. Chen (1962) notes that the linear theory predicts 
the force coefficients with an error of 8 yo for a flat-plate hydrofoil at  5 degrees 
incidence and an error of 5 yo for a symmetric wedge of 15 degrees included angle. 
A specific objection that may be raised is that the present theory cannot be 
extended directly to a higher-order accuracy, because of the averaging technique 
used. In  addition, one must recall that ii: must be small compared with qc or Urn, 
and that the C, curves must be reasonable for the theory to remain valid. 

However, although the method of determining the vorticity effect is arbitrary, 
its value lies in the fact that it ( a )  permits solution of an otherwise difficult 
problem and ( 6 )  accounts, in general, for the over-all vorticity effects rather than 
the effects a t  one particular point in the flow. 
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